What's new

random drop set

The random walker algorithm is an algorithm for image segmentation. In the first description of the algorithm, a user interactively labels a small number of pixels with known labels (called seeds), e.g., "object" and "background". The unlabeled pixels are each imagined to release a random walker, and the probability is computed that each pixel's random walker first arrives at a seed bearing each label, i.e., if a user places K seeds, each with a different label, then it is necessary to compute, for each pixel, the probability that a random walker leaving the pixel will first arrive at each seed. These probabilities may be determined analytically by solving a system of linear equations. After computing these probabilities for each pixel, the pixel is assigned to the label for which it is most likely to send a random walker. The image is modeled as a graph, in which each pixel corresponds to a node which is connected to neighboring pixels by edges, and the edges are weighted to reflect the similarity between the pixels. Therefore, the random walk occurs on the weighted graph (see Doyle and Snell for an introduction to random walks on graphs).
Although the initial algorithm was formulated as an interactive method for image segmentation, it has been extended to be a fully automatic algorithm, given a data fidelity term (e.g., an intensity prior). It has also been extended to other applications.
The algorithm was initially published by Leo Grady as a conference paper and later as a journal paper.

View More On Wikipedia.org

Upcoming Events

Linkbacks